Pisagor üçlüsü - Matematik Canavarı

26 Şubat 2016 Cuma

Pisagor üçlüsü


Pisagor üçlüsü, a2+b2=c2 eşitliğini sağlayan a,b,c tam sayılarına verilen addır. Örneğin (3,4,5) bir Pisagor üçlüsüdür. Eğer herhangi bir (a,b,c) Pisagor üçlüsüyse (ka,kb,kc) de bir Pisagor üçlüsüdür. Eğer (a,b,c) aralarında asalsa buna temel Pisagor üçlüsü denir.


c ≤ 100 şartını sağlayan 16 tane temel Pisagor üçlüsü vardır:
( 3, 4, 5 )( 5, 12, 13)( 7, 24, 25)( 8, 15, 17)
( 9, 40, 41)(11, 60, 61)(12, 35, 37)(13, 84, 85)
(16, 63, 65)(20, 21, 29)(28, 45, 53)(33, 56, 65)
(36, 77, 85)(39, 80, 89)(48, 55, 73)(65, 72, 97)
100 < c ≤ 300 şartını sağlayan temel Pisagor üçlüleri:
(20, 99, 101)(60, 91, 109)(15, 112, 113)(44, 117, 125)
(88, 105, 137)(17, 144, 145)(24, 143, 145)(51, 140, 149)
(85, 132, 157)(119, 120, 169)(52, 165, 173)(19, 180, 181)
(57, 176, 185)(104, 153, 185)(95, 168, 193)(28, 195, 197)
(84, 187, 205)(133, 156, 205)(21, 220, 221)(140, 171, 221)
(60, 221, 229)(105, 208, 233)(120, 209, 241)(32, 255, 257)
(23, 264, 265)(96, 247, 265)(69, 260, 269)(115, 252, 277)
(160, 231, 281)(161, 240, 289)(68, 285, 293)

Faydalı Semboller: 
÷ × ½ √ ∞ = ≠ ≤ ≥ ≅ ≈ ~ ⇒ ±  ∈  Δ θ ∴ ∑ ∫ • π -¹ ² ³ ° ( ) [ ] a b ∠   ∟ ´ ´´     || Δ |x-y{ } ∩ ∪ ⊆ ⊂ ⊄ ⊇ ⊃ ⊅ ⊖ |A| Ø  1    

Post Top Ad