Riemann Toplamı Animasyonu

Matematikte, Riemann toplamı genellikle fonksiyon eğrisinin altında kalan bölgenin yaklaşık alanıdır. Bu toplama, Alman matematikçi Bernhard Riemann'ın soyadı verilmiştir.

Toplama işlemi, bölgenin farklı şekillere bölünüp (dikdörtgenler ya da yamuklar) birlikte, fonksiyonun ölçülen bölgesine benzer bir alan çıkartılması, ardından da her bir şeklin alanının hesaplanması ve son olarak bütün bu küçük alanların toplanmasından oluşur. Böyle bir yaklaşım belirli integrallerin sayısal hesaplanmasında kullanılabilir. Ayrıca hesabın temel teoremi kapalı tür integral yazımına izin vermediği zaman da kullanılabilir.




Küçük şekillerle doldurulmuş bölgenin alanı tam olarak, ölçülmek istenen alana eşit olmadığı için Riemann toplamı gerçek alandan daha farklı çıkar. Bu hata, bölgeyi daha da küçük şekillere bölmekle giderilebilir. Şekiller küçüldükçe toplam, Riemann integraline yaklaşır.

Daha fazla bilgi için kaynağa tıklayın.

Kaynak: http://tr.wikipedia.org/wiki/Riemann_toplam%C4%B1

Google Plus İle Paylaş
    Blogger Comment
    Facebook Comment

0 yorum:

Yorum Gönder



Faydalı Semboller: 
÷ × ½ √ ∞ = ≠ ≤ ≥ ≅ ≈ ~ ⇒ ±  ∈  Δ θ ∴ ∑ ∫ • π -¹ ² ³ ° ( ) [ ] a b ∠   ∟ ´ ´´     || Δ |x-y{ } ∩ ∪ ⊆ ⊂ ⊄ ⊇ ⊃ ⊅ ⊖ |A| Ø  1