12. SINIF MATEMATİK ÖZEL TANIMLI FONKSİYONLAR KONU ANLATIMI | Matematik Canavarı

12. SINIF MATEMATİK ÖZEL TANIMLI FONKSİYONLAR KONU ANLATIMI


KONU ANLATIMI İNDİRMEK İÇİN TIKLAYIN. 
A. BİR FONKSİYONUN TANIM KÜMESİ

Kuralı verilmiş bir fonksiyonun tanımlı olduğu en geniş reel sayı kümesine o fonksiyonun tanım kümesi (tanım aralığı) denir.

1. Polinom Fonksiyonun Tanım Kümesi       
                                     
f(x) = an xn + an – 1 xn – 1 + …+ a1x + a0
şeklindeki reel katsayılı polinom fonksiyonları bütün reel sayılar için tanımlıdır.

Tanım kümesi A ile gösterilirse, polinom fonksiyonlarının tanım kümesi  olur.

2. Rasyonel Fonksiyonların Tanım Kümesi

 şeklindeki rasyonel fonksiyonlar
Q(x) = 0 için tanımsızdır.

Q(x) = 0 denkleminin çözüm kümesi Ç = B ise f(x) fonksiyonunun en geniş tanım kümesi (tanım aralığı)  olur.

3. Çift Dereceden Köklü Fonksiyonların Tanım Kümesi

n bir pozitif tam sayı olmak üzere,  şeklindeki fonksiyonlar g(x) ³ 0 için tanımlıdır.
g(x) ³ 0 eşitsizliğinin çözüm kümesi Ç = B ise f(x) fonksiyonunun en geniş tanım kümesi A = B dir.

4. Tek Dereceden Köklü Fonksiyonların Tanım Kümesi

n bir pozitif tam sayı olmak üzere,

      
fonksiyonu, g(x) in tanımlı olduğu her yerde tanımlıdır. g(x) in tanım kümesi B ise f(x) in tanım kümesi (aralığı) A = B dir.

B. PARÇALI FONKSİYONLAR

Tanım kümesinin alt aralıklarında farklı birer kuralla tanımlanan fonksiyonlara parçalı fonksiyonlar adı verilir.

C. MUTLAK DEĞER FONKSİYONU

f : A ® B fonksiyonu reel değerli bir fonksiyon olsun.
şeklinde tanımlanan |f| fonksiyonuna f fonksiyonunun mutlak değer fonksiyonu denir.

      
Kural

Mutlak değerin tanımına göre, f(x) in negatif olmadığı yerde |f(x)| in grafiği f(x) in grafiği ile aynıdır. f(x) in negatif olduğu yerde |f(x)| in grafiği f(x) in grafiğinin Ox eksenine göre simetriğidir.
Bu durumda, y = |f(x)| in grafiğini iki adımda çizebiliriz.
1. Adım: y = f(x) in grafiği çizilir.
2. Adım : Ox ekseninin üst tarafında kalan eğri aynen bırakılır. Ox ekseninin altında kalan kısmın Ox eksenine göre simetriği alınır.


D. İŞARET FONKSİYONU

 den  ye bir fonksiyon olmak üzere,

      
şeklinde tanımlanan fonksiyona f nin işaret fonksiyonu denir.

E. TAM DEĞER FONKSİYONU

1. Tam Değer Kavramı

x bir reel sayı olmak üzere, x ten büyük olmayan en büyük tam sayıya x in tam değeri denir ve  ile gösterilir. x bir reel sayı olmak üzere, x ten büyük olmayan en büyük tam sayı t ise,

      
olur.

2. Tam Değer Fonksiyonu

      
şeklinde tanımlanan fonksiyona tam değer fonksiyonu denir.

Kural






Google Plus İle Paylaş
    Blogger Comment
    Facebook Comment

0 yorum:

Yorum Gönder



Faydalı Semboller: 
÷ × ½ √ ∞ = ≠ ≤ ≥ ≅ ≈ ~ ⇒ ±  ∈  Δ θ ∴ ∑ ∫ • π -¹ ² ³ ° ( ) [ ] a b ∠   ∟ ´ ´´     || Δ |x-y{ } ∩ ∪ ⊆ ⊂ ⊄ ⊇ ⊃ ⊅ ⊖ |A| Ø  1